B.E ELECTRICAL AND ELECTRONICS ENGINEERING(EEE) CHOICE BASED CREDIT SYSTEM (CBCS) SEMESTER -VI								
DIGITAL SIGNAL PROCESSING (Core Subject)								
Subject Code	15EE63	IA Marks	20)				
Number of Lecture Hours/Week	04	Exam Hours		3				
Total Number of Lecture Hours	50	Exam Marks	80)				
Credits - 04								
 Course objectives: To define Discrete Fourier transform and its properties. To evaluate DFT of various signals using properties of DFT. To explain different linear filtering techniques. To explain the evaluation of DFT and inverse DFT using fast and efficient algorithms To discuss impulse invariant transformation, bilinear transformation techniques and their properties. To design infinite impulse response Butterworth digital filters using impulse invariant and bilinear transformation techniques. To design infinite impulse response Chebyshev digital filters using impulse invariant and bilinear transformation techniques. To discuss direct, cascade, parallel and ladder methods of realizing a digital IIR filter. To discuss window functions used for the design of FIR filters. To discuss windowing technique of designing FIR filter. 								
 To discuss frequency sampling technique of designing FIK filter. To discuss direct, cascade and linear phase form of realizing a digital FIR filter. 								
Module-1				Teaching Hours				
Discrete Fourier Transforms: Definitions, properties-linearity, shift, symmetry Properties- circular convolution – periodic convolution, use of tabular arrays, circular arrays, Stock ham's method, linear convolution – two finite duration sequence, one finite & one infinite duration, overlap add and save methods. Revised Bloom's L_1 – Remembering, L_2 – Understanding, L_3 – Applying, L_4 – Analysing.								
Module-2								
Fast Fourier Transforms Algorithms: Introduction, decimation in time algorithm, first decomposition, number of computations, continuation of decomposition, number of multiplications, computational efficiency, decimation in frequency algorithms, Inverse radix – 2 algorithms. ■								
Revised Bloom's L_1 – RememberingTaxonomy Level L_5 – Evaluating	g, L ₂ – Understanding, L	₋₃ – Applying, L ₄ – Ana	lysing.					
Module-3								
 Design of IIR Digital Filters: Introduction, impulse invariant transformation, bilinear transformations, All pole analog filters- Butterworth & Chebyshev filters, design of digital Butterworth filter by impulse invariant transformation and bilinear transformation, Frequency transformations. ■ Revised Bloom's L1- Remembering, L2 – Understanding, L3 – Applying. L4 – Analysing. L5 – Evaluating 								
Module-4								
Design of IIR Digital Filters (Continued): Design of digital Chebyshev –type 1 filter by impulseinvariant transformation and bilinear transformation, Frequency transformations.Realization of IIR digital systems: direct form, cascade form and parallel form, Ladder structuresfor equal degree polynomial.Revised Bloom'sTaxonomy LevelL ₁ – Remembering, L ₂ – Understanding, L ₃ – Applying, L ₄ – Analysing,L ₅ – Evaluating								

B.E ELECTRICAL AND ELECTRONICS ENGINEERING(EEE) CHOICE BASED CREDIT SYSTEM (CBCS) SEMESTER -VI

15EE63 DIGITAL SIGNAL PROCESSING (Core Subject) (continued)

Mod	ule-5					Teaching Hours			
Desig	Design of FIR Digital Filters: Introduction, windowing, rectangular, modified rectangular. 10								
Hamming, Hanning, Blackman window, design of FIR digital filters by use of windows, Design of									
FIR digital filters-frequency sampling techniques.									
Real	zation of FIR	systems: direct form, cascade	e form, linear phase form						
Taxo	nomv Level	$L_1 - \text{Kemembering}, L_2 - \text{Un}$ $L_5 - \text{Evaluating}$	derstanding, $L_3 - Appryin$	g, L_4 – Analysing,					
	J	Ly Livaluating							
Course outcomes:									
At th	e end of the co	ourse the student will be able to	0:						
• Compute the DFT of various signals using its properties and linear filtering of two sequences.									
• Apply fast and efficient algorithms for computing DFT and inverse DFT of a given sequence									
• Design infinite impulse response Butterworth digital filters using impulse invariant / bilinear transformation technique.									
• Design infinite impulse response Chebyshev digital filters using impulse invariant or bilinear transformation technique.									
•	• Realize a digital IIR filter by direct, cascade, parallel and ladder methods of realization.								
• Discuss different window functions and frequency sampling method used for design of FIR filters.									
• Design FIR filters by use of window function or by frequency sampling method.									
• Realize a digital FIR filter by direct, cascade, and linear phase form. ■									
Graduate Attributes (As per NBA) Engineering Knowledge, Problem analysis, Design/ Development of Solutions, Modern Tool Usage.									
 Question paper pattern: The question paper will have ten full questions carrying equal marks.Each full question consisting of 16 marks. 									
• There will be two full questions (with a maximum of four sub questions) from each module.									
• Each full question will have sub question covering all the topics under a module.									
• The students will have to answer five full questions, selecting one full question from each module. ■									
Textbook									
1	Introduction	to Digital Signal Processing	Jhonny R. Jhonson	Pearson	1 st Editi	on, 2016			
Reference Books									
1.	Digital Signa Algorithms,	al Processing – Principles, and Applications	Jhon G. Proakis Dimitris G. Manolakis	Pearson	4 th Editi	on, 2007.			
2.	Digital Signa	al Processing	A.NagoorKani	McGraw Hill	2 nd Edit	tion, 2012			
3	Digital Signa	al Processing	Shaila D. Apte	Wiley	2 nd Edit	ion, 2009			
4	Digital Signa	al Processing	Ashok Amberdar	Cengage	1 st Edit	ion, 2007			
5	Digital Signa	al Processing	Tarun Kumar Rawat	Oxford	1 st Edit	ion, 2015			
			·	•	·				